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Cost-utility analysis of seasonal influenza vaccine  

among school children in Thailand 

 

1. Background 

1.1  Seasonal influenza 

Influenza occurs in both pandemic and seasonal forms. Pandemics, defined as 

sustained spread of new influenza shift variants in at least two WHO regions, occur 

infrequently [1]. For example, there were three pandemics in the 20th century. Morbidity and 

mortality due to influenza are usually particularly high during the occasional global 

pandemic, though can also vary within a single pandemic. On the other hand, in the years 

between influenza pandemics, which are called interpandemic periods, influenza epidemics 

occur almost every year. We refer to this interpandemic influenza as “seasonal influenza” to 

distinguish it from pandemic influenza. Seasonal influenza is usually less severe in its impact 

compared to pandemic influenza, but can also show considerable between-year variation. 

Nonetheless, seasonal influenza has a substantial effect, particularly in vulnerable 

population groups, and cumulative mortality due to seasonal influenza is believed to greatly 

exceed that due to pandemic influenza [2].  

In temperate and cold climates, the epidemiology of seasonal influenza is clearly 

characterized by the occurrence of one annual epidemic during the winter months 

(November-March in the Northern Hemisphere; June-September in the Southern 

Hemisphere) [2-3]. While there are limited published data on influenza in tropical and 

subtropical areas, it appears that the timing of periods of influenza epidemics is less distinct 

in these settings and more variable; seasonal influenza epidemics can sometimes occur 

twice a year or even throughout the year [4]. For example, in Thailand, during the years 

1988-2008, influenza like illness (ILI) incidence was observed year-round, with two peaks 

per epidemic year: a smaller peak in January-March and a larger peak in June-September 

[5-6]. 
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The recent pandemic in 2009 has raised awareness and concerns regarding 

preparedness and interventions against seasonal and pandemic influenza [7-8]. As our 

understanding of transmission dynamics and determinants of seasonality at a local scale 

(i.e. in the tropics) improves, there is the potential to develop better methods for the 

management and control of annual influenza epidemics, in particular through improved 

vaccination strategies against seasonal influenza. 

 

1.2 Influenza Vaccine 

Vaccination is at present the primary public health intervention for the reduction of 

illness caused by seasonal influenza, followed by antiviral drugs [9-11]. Vaccines protect 

against influenza by stimulating an antigen-specific immune response in recipients. To be 

effective at reducing influenza illness the antigens contained in the vaccine must match 

those of the circulating virus.  

There are two types of influenza vaccines, live attenuated influenza vaccine (LAIV) 

and trivalent inactivated vaccine (TIV). LAIV is suggested for individuals aged 2 to 49 years 

while TIV is indicated for those aged 6 months and older [12]. A recent meta-analysis 

reported that the pooled efficacy for preventing laboratory-confirmed of LAIV versus placebo 

is 83% in children aged 6 months to 7 years and 59% in adults aged 18 to 65 years for TIV 

[13]. Another meta-analysis reported that year 1 efficacy of two doses of LAIV was 83% for 

those aged 2 to 17 years when compared to placebo and year 2 efficacy of LAIV was 87%for 

the same age group. This study estimated that those receiving LAIV had 44% (caused by 

similar strains) and 48% (caused by all strains) fewer cases of influenza than those receiving 

TIV [14]. One study estimated LAIV to have 82% efficacy and TIV to have 59% efficacy for 

healthy children aged 2 to 16 years [15]. This study also mentioned that there was a marked 

difference between vaccine efficacy and effectiveness (for preventing influenza like illness); 

the effectiveness for prevention of influenza-like illness is 33% and 36% for LAIV and TIV 

respectively. It seems that both vaccine types have moderate protection against seasonal 

influenza. All studies found that LAIV had higher efficacy than TIV. However, it should be 
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noted that we still have the substantial gaps in our knowledge about efficacy or effectiveness 

for some age groups [13]. 

Reported reactions or reactogenicity events (REs) to influenza vaccines include 

runny nose/nasal congestion, sore throat, cough, vomiting, headache, muscle aches, chills, 

decreased activity, irritability, decreased appetite, and fever. REs in vaccine-naïve children 

that were reported by significantly more frequent amongst LAIV recipients than placebo 

recipients were nasal congestion (58.1% vs. 49.6%), fever (16.1% vs. 11.2%), decreased 

activity (14.5% vs. 10.5%), and muscle aches (6.0% vs. 2.8%) for the first vaccine dose. 

Surprisingly, the frequency of cough in the LAIV group was lower than in the placebo group 

(29.7% vs. 34.1%). For the second dose, only nasal congestion and appetite decrease were 

significantly more frequent than in the placebo group. Compared with the first dose of TIV, 

the frequency of REs in the LAIV group were higher than in the TIV group only for nasal 

congestion (54.1% vs. 43.2%). Cough was still lower in LAIV group than it was in the TIV 

group (30.5% vs. 32.0%). There was no significant difference in REs between LAIV and TIV 

groups after the second-dose vaccination [16]. From medical record review among 

previously unvaccinated and TIV vaccinated children, increased frequency of gastrointestinal 

tract symptoms (incidence rate ratio (IRR), 1.18), gastrointestinal tract disorders (7.70), and 

fever (1.71) were significantly associated with vaccination [17]. 

 

1.3 The use of mathematical models in evaluating possible influenza vaccination 

control programme 

Mechanistic mathematical models are used in many areas of the life sciences  to 

study both within-host processes (e.g. pharmacokinetics and pharmacodynamics) and 

between-host processes (e.g. demographics and epidemics) .They are useful not only for 

developing an understanding of mechanisms generating observed outcomes and evaluating 

hypothetical scenarios, but also for highlighting what we know and, equally importantly, what 

we don't. Disease transmission models aim to simplify potentially complex systems into their 
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key processes and enable us to investigate how the different factors influence epidemic 

behaviour.  

Conventional static models (i.e. models that do not account for how the force of 

infection evolves in time) fail to capture such indirect effects and consequently will have a 

tendency underestimate the benefit of vaccination programme. Instead non-linear dynamic 

epidemic models (which we refer to simply as mathematical models) are needed. To be of 

practical value such models must be adapted to both the pathogen of interest, the 

interventions we want to consider, to the demographics of the population we want to study, 

and local conditions such as seasonal factors. Overestimation of vaccine benefits is also 

possible in both static and dynamic models, for example if the effectiveness of vaccination is 

overestimated or the immunogenicity of naturally occurring infection is underestimated.   

Again, dynamic mathematical models are required if we want to fully account for such 

herd immunity effects and to take advantage of them in designing more efficient vaccination 

programmes. Furthermore, vaccination programmes which are not able to eliminate a 

pathogen can profoundly alter the age distribution of incident cases. Typically, we find that 

because vaccination programmes reduce intensity of transmission the average age at which 

people become infected increases. Since the consequence of infection (risk of 

hospitalisation, death etc.) can vary greatly with the age of infection, this means that in some 

cases poorly-designed vaccination programmes can actually lead to worse outcomes at a 

population level even though the vaccine benefits those receiving it. Again, mathematical 

models provide valuable tools for assessing the likely effects of vaccination programmes on 

incidence of disease in different age groups and for assessing the chance of such adverse 

outcomes. There are a number of published dynamic models for both pandemic and 

seasonal influenza [11,18]. However, very little published work has addressed the dynamics 

of seasonal influenza in the tropics and no previous work has used such a dynamic 

modelling approach to evaluate the potential health and economic consequences and cost-

effectiveness of seasonal influenza vaccination programmes in Thailand.  
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2. Objectives 

2.1  General objectives 

To assess the cost-utility of providing either live attenuated influenza vaccine (LAIV) 

or trivalent inactivated vaccine (TIV) for school-aged children to prevent seasonal influenza 

infection; and ii) provide information on the expected impact of seasonal influenza 

vaccination in Thailand to aid decision making amongst policy-makers. 

2.2  Specific objectives 

1. To develop an age-structured mechanistic model for used for evaluating seasonal 

influenza vaccination policies in Thailand; 

2. To identify resources used for providing either LAIV or TIV vaccine to school-

aged children, ages 2-17 years, to prevent seasonal influenza infection in 

Thailand; 

3. To estimate the costs and consequences of vaccinating school children, using 

either LAIV or TIV compared to no immunization, on the basis of existing 

evidence; 

4. To identify priority areas for further research to be undertaken in the future in 

order to reduce level of uncertainty associated with the coverage decision. 

 

3. Methodology 

The work includes: 1) development of a dynamic epidemiological model that will be 

used to evaluate the impact of vaccination programme on age-stratified incidence of 

seasonal influenza infection under a variety of scenarios; 2) a model-based cost-utility 

analysis to estimate the incremental cost effectiveness ratios (ICERs) of providing either 

LAIV or TIV vaccination programme compared with no vaccination programme in school-

aged children population, including a multivariate sensitivity analysis; 3) an expected value of 

perfect information (EVPI) analysis and a partial EVPI analysis to assess the degree to which 

decision-making could be improved by removing and reducing parameter uncertainty    

(Figure 1). 
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Figure 1. Modelling workflow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Schematic diagram of the methodology and the information/data that are required for both 
the model-building stage (pink), the estimate of the costs and consequences of vaccinating 
school children using either LAIV or TIV compared to no immunization (green), and the 
partial EVPI (blue). SEIRs: Susceptible Exposed Infectious Recovered Susceptible. ICER: 
incremental cost-effectiveness ratio. EVPI: expected value of perfect information. 
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3.1 A dynamic mathematical model  

The dynamic epidemiologic model will be used to obtain the age-stratified incidence 

of seasonal influenza infections under different vaccination programme scenarios. Figure 1 

(pink box) shows the epidemiologic model that will be used for assessing costs and 

consequences of intervention options (vaccination and no vaccination programme). The age-

structured deterministic mathematical transmission dynamic model will be based on a SEIRS 

structure, meaning that the whole Thai population divides into four compartments 

representing different disease states: susceptible (S) representing those who have not been 

infected or successfully vaccinated and are therefore fully vulnerable to infection together 

with those who have been vaccinated but who have since lost immunity against circulating 

influenza subtypes due to antigenic drift; exposed (E) representing those who have been 

infected, but who have not yet progressed to become infectious (i.e. able to infect others); 

infectious (I) (i.e. infected and able to infect others); and recovered (R) representing the 

people who are no longer vulnerable to infection with the same virus type, either because 

they have been infected and recovered, developing immunity, or because they have been 

effectively vaccinated. The model will account for age and risk group-structured transmission 

and also account for seasonal forcing patterns for influenza transmission in Thailand. The 

model will be calibrated using influenza data from Thailand [19-22]. This will ensure that the 

model predictions are based on real data concerning the influenza-related health outcomes 

of interest (age-stratified mortality, hospitalizations, and ICU admissions). Model fitting will be 

carried out within a Bayesian framework, using priors for model parameters derived from 

both literature review and formal elicitation of expert opinion [23]. Fitting the model to data 

will yield a joint posterior distribution for model parameters. This joint posterior distribution will 

quantify knowledge and uncertainty about parameters which will be accounted for when 

analyzing the impact of the vacation programmes. In the event that a full Bayesian analysis 

cannot be completed within the allotted timeline, alternative less computationally expensive 

fitting techniques will be employed, such as those employed previously in other influenza 

modeling studies [18, 24].  
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3.1.1  Model structure 

By using ordinary differential equations, we can consider the events occurring at 

continuous time rather than in discrete time interval.  The mathematical model of each of the 

four compartments can be described below. 

݀ ௜ܵ(ݐ)
ݐ݀

= ܾ(1 − (ݒ ௜ܰ(ݐ) − (ݐ)௜ߣ ௜ܵ(ݐ) + ߩ ௜ܵ(ݐ) − ݉ ௜ܵ(ݐ) 

(ݐ)௜ܧ݀
ݐ݀

= (ݐ)௜ߣ ௜ܵ(ݐ) − ௜݂ܧ௜(ݐ) −  (ݐ)௜ܧ݉

௜ܫ݀ (ݐ)
ݐ݀

= ௜݂ܧ௜(ݐ) − (ݐ)௜ܫݎ − ௜ܫ݉  (ݐ)

ܴ݀௜(ݐ)
ݐ݀

= ݒܾ ௜ܰ(ݐ) + (ݐ)௜ܫݎ − ܴ݉௜(ݐ) − ௜ܴߩ  (ݐ)

 

௜ܰ(ݐ) =  ௜ܵ(ݐ) + (ݐ)௜ܧ + ௜ܫ (ݐ) + ܴ௜(ݐ) 

Where, i corresponds to the age group (one-year age band) and includes all age 

groups (not just school-aged children). 

ௗௌ(௧)
ௗ௧

 denotes the rate of change in the number of susceptible individuals at time t. 

ௗா(௧)
ௗ௧

 denotes the rate of change in the number of exposed individuals at time t. 

ௗூ(௧)
ௗ௧

 denotes the rate of change in the number of infectious individuals at time t. 

ௗோ(௧)
ௗ௧

 denotes the rate of change in the number of recovered (immune) individuals at 

time t. 

,(ݐ)ܵ ,(ݐ)ܧ ,(ݐ)ܫ  ,equal the total number of individuals who are susceptible (ݐ)ܴ

exposed, infectious and immune/recovery respectively at time t. 

 .is the total population size at time t(ݐ)ܰ
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݂ denotes the rate of onset of infectiousness.  

 .denotes the rate at which individuals recover from being infectious ݎ

 ௜(௧) denotes the force of infection in age group i at time t. This will depend on theߣ

number of infectious individuals in this and other age groups and patterns of mixing 

between the age groups which will be taken from a previously performed contact 

survey in Thailand. 

݉ denotes the mortality rate. 

   .௜ is the introduction of vaccination for a proportion of people in age group i ݒ

 is a proportion of immunity waning due to different sub-type of virus introduced. 

 

For notational convenience, aging has been neglected in the above equations. This 

will be accounted for by using one year age bands and shifting each person to the 

next age band at the end of each year. In practice, it may be challenging to estimate a 

realistic value for the rate of waning of immunity, . In the base case analysis we will 

assume conservatively that there is no lasting immunity between different years and 

fit the model to individual years separately. Given that the long-term effects of 

vaccine-induced immunity and immunity from natural infections are poorly 

understood, we will also perform sensitivity analyses where we consider alternative 

plausible scenarios.   

 

3.2  Modelling Cost-Effectiveness 

Health-economic evaluation uses decision analytic models to predict outcomes in 

terms of costs and health benefits [25]. A baseline model will describe the costs and health 

outcomes associated with providing either the LAIV or TIV vaccination programme compared 

with no vaccination programme (Figure 1, green box). Cost, effectiveness, and utility 

parameters will be put into the model to estimate the total cost and health gained from each 
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option. Health benefits will be expressed in terms of disability adjusted life years (DALYs) 

averted. The influenza-related or influenza-liked disability weights will be obtained from local 

studies via the Health Technology Assessment Database [26]. If there are more than one 

studies identified, meta-analysis will be employed in order to combined the quantitative data. 

In case of no relevant disability weights available in Thailand, researchers will perform a 

comprehensive literature review for obtaining those values from other settings. The study 

adopts one-year time horizon in base-case analysis. All costs and cost-utility ratios will be 

reported based in year 2012. In addition, given that the long-term effects of vaccine-induced 

immunity will be examined through sensitivity analysis, 3% discounting rate as suggested in 

the national methodological guideline for conducting health economic evaluation will be 

applied for costs and outcomes obtained beyond based year (2012).   

The results in terms of value for money will initially be presented in term of an 

incremental cost-effectiveness ratio (ICER) where:  

ICER =  Cost of vaccination programme – Cost of current practice 

                 Outcome of vaccination programme – Outcome of current practice 

The ratio is often interpreted in light of a decision-maker’s maximum willingness to 

pay for a unit of health outcome. Programmes might be considered cost-effective if they 

generate an incremental cost-effectiveness ratio (ICER) that is less than the willingness to 

pay. The Subcommittee for Development of the National List of Essential Medicines and the 

Subcommittee for Development of the Health Benefit Package and Service Delivery of the 

National Health Security Office recommend that health intervention yielding equal or less 

than one capita gross domestic product (GDP; US$4,800 in 2011) per DALY averted 

represents good value for money (cost-effective) under the Thai healthcare setting [27]. 

However, in some circumstances, especially vaccine introduction, the zero threshold (0 

Baht/DALY averted) is referred in Thailand [28]. Thus, this study will use both thresholds in 

the analysis.  
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The study will be conducted using costs not only incurred from the health system 

perspective (direct medical costs only) but also from the societal perspective (accounting for 

direct medical, direct non-medical, and indirect costs) since considering only the costs from 

the hospital might underestimate the total costs of treatment for the influenza infections. 

Direct medical costs will be identified from hospital database including all out-patients and in-

patients cares provided in both public and private health facilities. Direct non-medical costs, 

including costs of transportation, foods and lodging, and indirect costs, such as productivity 

loss of patient from work absenteeism, will be retrieved from local studies.  

Infection with seasonal influenza can occur with varying levels of severity, and the 

risk of severe cases is known to vary according to the age group. Based on uncertainty of 

parameters, a series of one-way sensitivity analysis will be performed in order to identify the 

most sensitive parameters amongst key parameters and assumptions, such as vaccine 

efficacy, severity of infection, annual risk of infection reduction, vaccine costs, that affect this 

economic evaluation analysis. Moreover, discount rate of 0 – 6% will be used to observe any 

changes in the conclusion of results as recommended in the Thai health technology 

assessment guideline [29]. A full multi-parameter sensitivity analysis will also be performed 

using a Monte Carlo approach. This approach repeats the analysis many hundreds of times 

with different model parameters. To reflect uncertainty in true value of the parameters this 

will be done by sampling parameters from their joint posterior distribution. Results will be 

expressed as cost-effectiveness acceptability curves (CEACs). 

 

 3.3  Expected value of perfect information (EVPI) and Partial EVPI 

Because we do not know the model parameters with certainty, and because the best 

policy depends on the values of these parameters, there is a chance that we will not choose 

the best policy. EVPI tells how much we would benefit if we knew all parameters perfectly 

and therefore had no chance of failing to choose the optimum policy. Meanwhile, a partial 

EVPI tells how much we would benefit if we knew key uncertain parameters. 
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The EVPI reflects the uncertainty as to which decision achieves the lowest ICER. If 

we had perfect information, we would always be able to choose the policy with the lowest 

ICER. However, because of imperfect information, choosing the policy that minimises the 

expected ICER we will sometimes select a suboptimal policy. 

 
The EVPI is defined as: 

ܫܸܲܧ = ,݆)ܤ}௝ݔఏൣ݉ܽܧ ൧{(ߠ − ,݆)ܤ]ఏܧ}௝ݔܽ݉  {[(ߠ

Here θ represents the model parameters (which are uncertain, though we assume we 

know their joint distribution), j is the policy option, and B(j, θ) is the net benefit for policy j with 

parameters θ. The net benefit is the different between the monetary value of the health gains 

(i.e. the willingness to pay per DALYs averted multiplied by the number of DALYs averted) 

and the net cost of the intervention.  

The second term on the right hand side is the expected net benefit of the best policy. 

To estimate this we sample a large number of parameters θ from their posterior distribution 

(which reflects everything we know or believe about these parameters). Suppose we sample 

N parameter sets (where N might be 10,000 or 100,000 or more). Call these samples 

θ1…θN. For each sample θi we run the model to evaluate the net benefit for each policy, j. 

For each sample and each policy we use these simulations to calculate the expected 

incremental net benefit B(j,θ). Then we obtain the overall expected net benefit of each policy, 

j, by averaging over these N values. The right hand side is then just the maximum for these 

expected net benefits. This represents the net benefit of the best policy we can choose given 

what we currently know about the parameters θ. 

Assuming we store all these simulation results, we can calculate the first term on the 

right hand side, the expected net benefit given perfect information, without performing any 

more simulations. All we need to do is to look at the stored values, B(j,θ), and for each 

sample to choose the largest value. That is, for each sample we select the best policy j.  

 
The partial EVPI (or pEVPI) is defined as: 
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(݅ߠ)ܫܸܲܧ݌ = ,݆)ܤ}ఏ௖|ఏ௜ܧ|௝ݔఏ௜ൣ݉ܽܧ ൧{(ߠ − ,݆)ܤ]ఏܧ}௝ݔܽ݉  {[(ߠ

Here θ divided into two subsets, θi and its complement θc ,and we wish to know the 

expected value of perfect information about θi (which are key parameters). The pEVPI is 

necessarily less than the overall EVPI.   

 

4.         Data collection 

We will utilize the estimations of the efficacy of the vaccine from a literature reviews 

and expert opinions. The other information will be based on literature review (Table 1). Costs 

consist of direct medical costs, direct non-medical costs and indirect costs considered from 

the societal perspective.  

 
Table 1 Data used in the model and their sources 

Parameter Source 

Epidemiology 

Probability of seasonal influenza infection Literature reviews 

Probability of hospitalization due to influenza Literature reviews 

Probability of ICU admission due to influenza Literature reviews 

Probability of adverse events from vaccination Literature reviews 

Probability of death due to influenza Literature reviews 

Mixing patterns between different age group in Thailand Thailand contact survey  

Mortality/Morbidity  

Baseline mortality of Thai population Burden of disease project 

Mortality/Morbidity rate of seasonal influenza infected patients Literature reviews 

  

Intervention effect  
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Parameter Source 

Efficacy and safety of LAIV and TIV vaccine Literature reviews 

Vaccine acceptance  

Acceptance of seasonal influenza vaccine among Thai people Literature review  

Acceptance of seasonal influenza vaccine Literature reviews 

Costs  

 Cost per non hospitalized influenza-infected patients Literature reviews 

     Cost per hospitalized influenza-infected patients Literature reviews 

     Cost per ICU admissions influenza-infected patients Literature reviews 

     Cost of adverse events management per patient Literature reviews 

     Cost of LAIV and TIV vaccine Thai GPO* 

Cost of logistics for vaccine delivery Literature reviews 

Direct non-medical and indirect cost (only for societal perspective) 

 Cost per non hospitalize influenza-infected patients Literature reviews 

     Cost per hospitalize influenza-infected patients Literature reviews 

     Cost per ICU admissions influenza-infected patients Literature reviews 

     Cost per vaccination Literature reviews 

Cost of adverse events management per patients Literature reviews 

Outcomes  

     Disability of influenza infection Literature reviews 

     Disability of hospitalization due to influenza Literature reviews 

     Disability of ICU admission due to influenza Literature reviews 

 

*GPO: The Government Pharmaceutical Organization of Thailand which is responsible for producing 
and merchandising influenza vaccines 
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5. Timeline 

Project Activities 
Time Frame (Month; start from July 2012) 

1 2 3 4 5 6 7** 

Literature review        

Consultation meetings with key experts in 

the field 

       

Parameterizing influenza transmission 

dynamic model 

       

Conducting economic evaluation analysis        

Organizing an expert meeting for 

considering of the preliminary results  

       

Report writing        

Producing and disseminating reports        

**The end of January 2012
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6. Research team and Budget 

 6.1 List of researchers 

 Dr. Aronrag Meeyai, Ph.D.    Principal investigator 

 Dr. Yot Teerawattananon, Ph.D.   Researcher 

 Dr. Naiyana Praditsitthikorn, Ph.D.  Researcher 

 Dr. Ben Cooper, Ph.D.    Researcher 

 Mr. Surachai Kotirum, Pharm.D.  Researcher 

 Ms. Warinya Deepana, Pharm.D.  Research assistant 

   

 6.2 Budget Details 

 6.2.1  Personnel 

Budget justification Day(s) Rate (USD) Sum 

Principal investigator 
Role:  

1. Project supervision 

2. Literature review 

3. Data collection 

4. Parameterizing Influenza transmission dynamic 

model 

5. Economic evaluation analysis 

6. Writing and editing report  

 

 

200 

90 

30 

90 

 

60 

60 

 

 

40 

40 

40 

40 

 

40 

40 

 

 

 

 

 

 

 

 

21,200 
 

Researchers 
Role:  

1. Literature review 

2. Data collection 

3. Parameterizing influenza transmission dynamic 

model 

4. Economic evaluation analysis 

5. Writing report 

 

 

90 

60 

60 

 

30 

60 

 

 

30 x 4 

30 x 4 

30 x 4 

 

30 x 4 

30 x 4 

 
 
 
 
 
 
 

36,000 
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Research assistant 
Role: 

1. Literature review 

2. Data collection 

3. Conducting and coordinating for expert meetings 

4. Writing meeting minute and report 

 

 

90 

60 

60 

60 

 

 

30 

30 

30 

30 

 
 
 
 
 

8,100 

Total budget required (round), USD  65,000 
 

6.2.2  Equipment 

Category Quantity Unit Cost Total, USD 

Berkeley Madonna license fee 1 300 300 

Total  300 

 

 6.2.3 Meeting 

Category Quantity Unit Cost Total, USD 

Expert consultation meeting 2 200 400 

Total  400 

 

 6.2.4 Documents/Printing 

Category Quantity Unit Cost Total, USD 

Preliminary report  10 10 100 

Final report 500 10 5,000 

Publication fee for journal articles 5,000 

Total  10,100 

  

Grand Total  75,800 
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7. Utilization of Results 

Most of the literature review, data collection, analysis work, writing and production of 

the report will be performed by the research team under close supervision of a national 

expert panel consisting of policy makers, vaccine experts, health professionals, academics, 

and representatives from civil society.  

 With the ever-increasing utilization of economic evaluation data for evidence-based 

decision making, this research will help to inform policy-makers in Thai healthcare sector, 

especially the National Vaccine Committee and the Subcommittee for Development of 

Benefit Package and Service Delivery under the Universal Coverage Scheme, about 

whether it is worthwhile to provide either LAIV or TIV influenza vaccine in a national 

vaccination programme for a given vaccine cost. HITAP is working closely with these two 

national authorities in development of new vaccines and health technologies, respectively. 

The results of this project will be also disseminated through other stakeholders, e.g. health 

professionals, academics, and general public. English and Thai reports of this study will also 

be available in public domain and there will be series of articles published in peer-reviewed 

journals alongside the model structure and program code.   
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